MATH 7 Review (2016 standards)

7.1a,b NEGATIVE EXPONENTS FOR POWERS OF TEN

Negative Exponents

$$
5^{-2}=\frac{1}{5^{-2}}=\frac{1}{25}
$$

Negative exponents represent numbers between 0 and 1. $10^{-3}=\frac{1}{10^{3}}=$ 0.001 = one thousandths

What does 10^{-2} represent? Answer: 0.01 or 1% (Percent is another name for hundredths)

Scientific notation used for very large and very small numbers.

Scientific notation has two parts - a decimal between 1 and 10 (examples: 1.0, 1.456, 6.4, 9.99) and a power of ten $\left(10^{5}, 10^{-3}\right)$

To write 145,600 in scientific notation, move the decimal point over until you have a decimal between 1 and 10.
$145,600=145600.00=1.456 \times 10^{5}$ (the decimal point was moved 5 places to the left)

Write 0.000345 in scientific notation - move the decimal point right until you have a number between 1 and 10.

Answer: 3.45×10^{-4} (the decimal point was moved right 4 places to get 3.45)

RATIONAL NUMBERS

Integers are positive and negative whole numbers (and zero)
Rational numbers - all numbers that can be written as fractions with denominators not zero. Examples $\sqrt{25}, \frac{1}{4}$, $-2.3,82,75 \%, 4 . \overline{59}$.

Proper fraction - numerator less that denominator - $1 / 2,7 / 8$
Improper fraction - numerator equal or greater than denominator - 12/7, 4/4.
Improper fractions can be written as mixed numbers - $3 \frac{5}{8}, 2 \frac{1}{4}$
A perfect square is a whole number whose square root is an integer: 4, 9, 16, 25, 36 etc

The symbol $\sqrt{ }$ represents a square root.
$\sqrt{36}=6$ means the square root of $36=6 \quad(6 \times 6=36)$
$\sqrt{81}=? \quad$ Answer: $9 \quad(9 \times 9=81)$
The absolute value of a number is the distance of that number from zero on the number line.

7.2 SOLVE PRACTICAL PROBLEMS USING RATIONAL NUMBERS

Rational numbers - All numbers that can be expressed as fractions in the form $\frac{a}{b}$ where a and b are integers and b does not equal zero. A rational number can be written as a decimal or as a repeating decimal (line over repeating digits).

Proper fraction - numerator less than denominator. example $\frac{3}{4}$.
Improper fraction - numerator is equal to or greater than the denominator. example $\frac{4}{3}$
Mixed number - improper fraction can be written as a mixed number. example $\frac{4}{3}=1 \frac{1}{3}$
Students will solve addition, subtraction, multiplication, and division problems with rational numbers.

7.3 PROBLEMS USING PROPORTIONAL REASONING

A proportion (introduced in grade 6) is an equation which states that two ratios are equal. A proportion can be written as $\quad \frac{a}{b}=\frac{c}{d} \quad \mathrm{a}: \mathrm{b}=\mathrm{c}: \mathrm{d} \quad a$ is to b as c is to d.

Equivalent ratios - multiply each value in ratio by same number. $5: 4$ is equivalent to $10: 8$ and $20: 16$. To solve a proportion with a missing value $(y), \quad \frac{2}{3}=\frac{y}{9}$, cross multiply like this: $2 \times 9=3 y$, so $18=3 y$ so $\quad 6=y$ A recipe calls for 3 eggs for every 6 cups of flour. How many eggs would you need with 2 cups of flour?

$$
\frac{3}{6}=\frac{y}{2} \quad 3 \times 2=6 y \quad 6=6 y \quad y=1 \mathrm{egg}
$$

Rate - ratio that compares two quantities measured in different units.
Unit rate - has 1 as denominator. example miles/hour A bike might travel 10 miles/one hour. Rate is $\frac{10}{1}$.
How far would the car travel in 4 hours? $\frac{10}{1}=\frac{y}{4}$ Cross multiply to solve. $10 \times 4=1 y \quad y=40$ miles Proportions can be used to convert length, weight (mass), and volume (capacity) within and between measurement systems.
-Length: between feet and miles; miles and kilometers example approx. 1 mile $=1.6 \mathrm{~km}$
In miles, how long is a 10 km race? $\frac{1}{1.6}=\frac{y}{10}->1 \times 10=1.6 y->10=1.6 y->10 \div 1.6=y->10 \mathrm{~km}=\mathbf{6 . 2 5} \mathbf{~ m i}$.
-Weight: between ounces and pounds; pounds and kilograms
-Volume: between cups and fluid ounces; gallons and liters

- Percent - ratio in which denominator is 100. To turn a fraction into a percent use this: $\frac{\text { percent }}{100}=\frac{\text { part }}{\text { whole }}$ Turn $3 / 4$ into a percent: $3 / 4=\frac{y}{100} \quad \rightarrow 3 \times 100=4 y \quad \rightarrow \quad 300=4 y \quad \rightarrow \quad y=300 \div 4 \quad-\quad y=75 \quad$-> $3 / 4=75 \%$

7.4 VOLUME AND SURFACE AREA OF RECTANGULAR PRISMS AND CYLINDERS

Polyhedron is a solid figure whose faces are all polygons.

Rectangular prism is a polyhedron in which all six faces are rectangles - 8 vertices and 12 edges

A face is any flat surface of a solid figure.
The surface area of a prism is the sum of the areas of all 6 faces and is measured in square units The volume of a three-dimensional figure is a measure of capacity and is measured in cubic

RECTANGULAR PRISM NET

VOLUME -
volume of base \times height If we call a smaller face the base -
$3 \times 3=9$ (base volume) don't forget 9×8 (height) $=72$ VOLUME $=72 \mathrm{~cm}^{3}$
units.

Cylinder - bases joined by a curved surface

Know how to find surface area and volume of cylinders and rectangular prisms.

Find the surface area and volume of a $3 \times 3 \times 8$ rectangular prism (see previous page)

Find the volume and surface area of a the cylinder with a radius of 2 cm and height of 4 cm . (see above) $\mathrm{pi}=3.14$

7.5 CORRESPONDING SIDES AND ANGLES OF SIMILAR QUADRILATERALS AND

 TRIANGLESSimilar polygons - angles are congruent, sides are proportional but not necessarily congruent.

Conguent polygons - angles and sides are congruent, same size and shape.

Congruent polygons are similar, but the reverse is not necessarily true.

In the similar triangles to the right, what length are the missing sides, EF and AC (use the ratio of $1 / 2$)

Congruent sides are marked with same number of hash marks.
Congruent angles are marked with equal number of curves

7.6 WORKING WITH QUADRILATERALS

Polygon - a closed plane figure with at least 3 sides that don't cross

Quadrilateral -a polygon with four sides.

Bisect - divide into two equal parts.

Line of symmetry - divides a figure into two congruent parts, each a mirror image of the other.

Parallelogram -a quadrilateral with both pairs of opposite sides parallel.

Rectangle - a quadrilateral with four right angles.
Square - polygon with four congruent sides and four right angels.

Rhombus - a quadrilateral with four congruent sides.
Trapezoid - a quadrilateral with exactly one pair of parallel sides. Parallel sides are called bases. Nonparallel sides are called legs.

Isosceles trapezoid - has legs of equal length and congruent base angles.

The sum of the measures of the interior angles of a quadrilateral is 360°.

four congruent sides

2 lines of symmetry
parallel sides are called bases

Trapezoid
No lines of symmetry

Isosceles Trapezoid
1 line of symmetry

7.7 TRANSLATIONS AND REFLECTIONS OF RIGHT TRIANGLES OR RECTANGLES IN THE COORDINATE PLANE

Transformation - changes the preimage in size, shape or position. New figure called image.

Translations and reflections change only the position of the preimage, not the size or shape.

Translation - preimage slides to different position.

Reflection - preimage is reflected over a line of reflection.

TRANSFORMATIONS

7.8 THEORETICAL AND EXPERIMENTAL PROBABILITIES OF AN EVENT

The probability of an event occurring is a ratio between 0 and 1 .

- A probability of 0 means the event will never occur.
- A probability of 1 means the event will always occur.

The theoretical probability of an event is the expected probability and can be

Theoretical probability of rolling a "3"

Experimental probability is what really happens If you roll 10 times, and get "3" twice,

the theoretical probability is

$$
\frac{2}{10}=\frac{1}{5}
$$ determined with a ratio.

The experimental probability of an event is determined by carrying out a simulation or an experiment. The more trials, the closer the experimental probability will be to the theoretical. In the example above, if the die was rolled 100 times, the experimental probably would likely be nearer to $1 / 6$.

7.9 FOCUS ON HISTOGRAMS; COMPARE WITH STEM-AND-LEAF PLOTS, LINE PLOTS, AND CIRCLE GRAPHS

A histogram is a form of bar graph in which the categories are consecutive and equal intervals. The length or height of each bar is determined by the number of data elements (frequency) falling into a particular interval.

Bins (categories) on x-axis must be of equal size and must include all the data.

The frequency (number of data points) on y-axis.
x-axis and y-axis can be switched so that bars are horizontal.

Can be used with categorical data or numerical data.

The type of graph used depends on the data and what the graph is intended to show.

Line plots are good for showing the spread of data and might be more useful when there are extreme high or low values.

Circle graphs are used to show a relationship between the parts and the

CIRCLE GRAPH
(parts of whole)

Worlds's Population

 Distribution (2020)

LINE GRAPH
Average monthly rainfall
 whole.

7.10 PROPORTIONAL VS. ADDITIVE RELATIONSHIPS, GRAPHS OF LINES, SLOPES, Y-INTERCEPTS

Slope may also represent the unit rate of a proportional relationship between two quantities, also referred to as the constant of proportionality or the constant ratio of \mathbf{y} to \mathbf{x}.

Relationship represented as $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}$, where \boldsymbol{m} is the slope.

$$
\frac{y}{x}=\frac{2}{4}=\frac{3}{6}=\frac{1}{2}=0.5
$$

The equation representing this proportional relationship of y to x is $\boldsymbol{y}=\mathbf{1 / 2} \boldsymbol{X}$ or $\boldsymbol{y}=\mathbf{0 . 5 \boldsymbol { x }}$
The slope of a line representing this relationship is $1 / 2$ or .5
Slope represents the rate of change of a line.
change in y (vertical change)
change in x (horizontal change)

The graph of the line representing a proportional relationship will include the origin $(0,0)$.

Practical Problem: John runs 1 mile every 6 minutes. In this example, he never tires. This table represents the relationship.

x (miles)	1	2	3	4	5
y (minutes)	6	12	18	24	30

$$
\frac{y}{x}=\frac{6}{1}=\frac{12}{2}=\frac{18}{3}=\frac{24}{4}=\frac{30}{5}=6
$$

This proportional relationship can be represented by the equation $\boldsymbol{y}=\mathbf{6 x}$.

The relationships above were multiplicative, but relationships can also be additive.

An additive relationship is not proportional and its graph does not pass through ($\mathbf{0}, \mathbf{0}$).

The equation for the additive relationship is $\boldsymbol{y}=\boldsymbol{x}+\mathbf{2}$
The slope of this line is $\mathbf{1}$. If this relationship was proportional, it would pass through the origin $(0,0)$. Instead, note that it passes through $(0,2)$ which is called the y-intercept.

7.11 EVALUATING ALGEBRAIC EXPRESSIONS

Evaluate an algebraic expression $4 a-(2+3) b$
given values $a=2 \quad b=3$

1) Replace the variables with given numbers $4(2)-(2+3)(3)$
2) simplify using order of operations $8-5 \times 3 ; 8-15 ;-7$

Review of Order of Operations

Grouping symbols (), [], etc innermost first

Exponents

Multiply and/or divide, left to right
Add and/or subtract, left to right
Review of Properties

- Commutative property of addition: $a+b=b+a$.
- Commutative property of multiplication: $a \cdot b=b \cdot a$.
- Associative property of addition: $(a+b)+c=a+(b+c)$.
- Associative property of multiplication: $(a \cdot b) \cdot c=a \cdot(b \cdot c)$.

Subtraction and division are neither commutative nor associative.

- Distributive property (over addition/subtraction): $a \cdot(b+c)=a \cdot b+a \cdot c$ and $a \cdot(b-c)=a \cdot b-a \cdot c$.
- Identity property of addition (additive identity property): $a+0=a$ and $0+a=a$.
- Identity property of multiplication (multiplicative identity property): $a \cdot 1=a$ and $1 \cdot a=a$.
- Inverse property of addition (additive inverse property): $a+(-a)=0$ and $(-a)+a=0$.
- Inverse property of multiplication (multiplicative inverse property): $a \cdot \frac{1}{a}=1$ and $\frac{1}{a} \cdot a=1$.
- Multiplicative property of zero: $a \cdot 0=0$ and $0 \cdot a=0$.

Division by zero is not a possible mathematical operation. It is undefined.

- Substitution property: If $a=b$, then b can be substituted for a in any expression, equation, or inequality.

7.12 Solving two-step linear equations in one variable

An equation: states that the mathematical expression on the left of the equal sign is equal to the expression on the right so expression = expression $2 x=4^{2}$
The Solution to an equation is what makes it true $-\mathbf{2 x}=\mathbf{4}^{\mathbf{2}} \quad$ Solution: $\mathbf{x}=\mathbf{8}$
An expression itself does not include an equal sign
A variable expression contains a variable: 5y ;
An algebraic expression is a variable contains a variable: $5 \boldsymbol{y}+\mathbf{3}$

More review of properties included here - see 7.12

7.13 Solving one- and two-step linear inequalities in one variable

SOLVING INEQUALITIES

When dividing by a negative

 number, change the direction of the sign$$
\begin{gathered}
1-2 x<9 \\
-2 x<9 \\
2>-4
\end{gathered}
$$

Inequalities on a number line

When both expressions of an inequality are multiplied or divided by a negative number, the inequality symbol reverses (e.g., $-2 x<6$ is equivalent to $x>$ $-3)$.

