PHYSICAL SCIENCE – 2018 STANDARDS (CURRENT THROUGH 2026)

Used for making scientific measurements	Probeware	
What is this called and what does it measure?	Spring scale – measures weight (not mass)	
What is this called and what does it measure?	Triple beam balance. Measures mass.	
Unit used to measure weight	Newton	
1 meter = ? millimeters 1 liter = ? milliliters 1 kilometer = ? meters 1 kilogram = ? grams	1,000 1,000 1,000	
1 meter = ? centimeters 1 centimeter = ? millimeters	100 10	
Type of graph?	Histogram	
What information does this histogram provide?	The columns in a histogram show the number in each category. Categories in this case are grade ranges. So graph tells is that 13 children received grades of 80-90.	
What kind of graph is this and what does it show?	Scatterplot – shows the relationship between two variables, in this case, height and weight.	
Study of materials at the molecular scale that are no longer visible to the naked eye.	Nanotechnology	

What is a nanometer?	One-billionth of a meter	
Often used to establish a standard for comparing the results of manipulating the independent variable	Control	
Scientific method always starts with:	A question that is based on observation, evidence or reason	
Metric units for measuring liquid volume.	Liter (milliliter)	

PS.2 MATTER IS COMPOSED OF ATOMS

Anything that has mass and occupies space		Matter	
Small particles that make up all matter		Atoms	
Four state	s (phases) of matter	Solid, liquid, gas, & plasma	
	Matter found in stars and neon signs	Plasma	
	Model that does not depict the three- dimensional aspect of an atom, and implies that electrons are in static orbits	The Bohr model	
	Model that best represents our current understanding of the structure of the atom.	The " electron cloud " model	

Subatomic particles comprising the atom	Proton (positive charge), neutron (no charge), electron (negative charge)	
Kinetic Molecular Theory	 States that atoms and molecules are perpetually in motion and have kinetic energy. Raising temperature increases kinetic energy 	
Used to organize information about the elements	Periodic table	
Horizontal rows	Periods Periods	
Vertical columns in the periodic table	Groups or families	
The basis for the arrangement of atoms on the periodic table	Number of protons	
Electrons in the outer energy level of an atom	Valence electrons	
Groups Properties of elements in the same group	Contain the same number of valence electrons and therefore similar chemical properties	
Similarities of elements in the same period (row)	Contain the same number of energy levels	

PS.3 PHYSICAL AND CHEMICAL PROPERTIES

Forces that hold **atoms** together

Electromagnetic forces

Four states (phases) of matter	Solid, liquid, gas, & plasma	
Physical properties of matter	Shape, density, solubility, odor, melting point, boiling point, and color	
Chemical properties of matter	Acidity, basicity, combustibility, and reactivity	
Physical properties that allow some metals to be flattened or shaped	Malleability	
Two or more elements that are chemically combined in a fixed ratio	Compound	
Two or more substances that are not chemically combined	Mixture	
melting shredding boiling chopping	Physical changes	
combustion rotting rusting digestion	Chemical changes	
Physical changes	The chemical composition of the substances does not change (i.e. phase changes)	
Chemical changes	Chemical composition of substances changes and different substances are formed.	
Ways to separate mixtures	Evaporation Filtering	

What happens during a chemical change ?	Chemical bonds are broken and made . Atoms are rearranged to form new substances	
Two types of chemical reactions	exothermic (energy is released) endothermic (energy is absorbed)	
Type of reaction that produces heat	Exothermic reaction	
Type of reaction that requires heat	Endothermic reaction	
How to calculate density	Mass/volume	
What are these and what do they tell us? H_2O_2 $C_6H_{12}O_6$	Chemical formulas display the number of atoms of each element that form a compound	
	Forming of an Ionic Bond	
	Forming of a Covalent bond	
What happens when a metallic element reacts with a non-metallic element?	Their atoms gain and lose electrons respectively, forming ionic bonds	
What happens when two nonmetals react?	Atoms share electrons, forming covalent bonds	
$2H_2 + O_2 \rightarrow 2H_2O$ What is this and what does it show?	Chemical equation – It represents the changes that takes place during a chemical reaction.	

$2H_2 + O_2 \rightarrow 2H_2O$ What is circled?	Reactants	
$2H_2 + O_2 \rightarrow 2H_2O$ What is circled?	Product	
What is the Law of Conservation of Matter ?	It states that regardless of how substances within a closed system are changed, the total mass remains the same.	
$2H_2 + O_2 \rightarrow 2H_2O$	$\begin{array}{cccc} 2H_2 + O_2 \rightarrow 2H_2O \\ \hline \\ reactants & products \end{array}$	
PS.4 THE PERIODIC TABLE		
How are the elements on the periodic table arranged?	According to their atomic numbers , or in other words the number of protons .	
What determines an element's chemical properties and reactivity?	The number of electrons in the outermost energy level (valence electrons)	
Why do atoms gain, lose or share electrons?	To become stable	
The number of known elements Over 118		
Elements with an atomic number over 92 These elements are not found naturally quantities on Earth		
Elements in the same column (family) of the periodic table -	Contain the same number of electrons in their outer energy levels and have similar properties	

The elements as one reads from left to right across the periodic table	Increasingly nonmetallic in character	
Elements along stair- step line	Metalloids, which have properties of metals and nonmetals	
Elements left of the stair- step line.	Metals	
Elements to the right of the stair-step line.	Nonmetals	
Electrons in the outer energy level of an atom	Valence electrons	
These elements tend to lose electrons in chemical reactions, forming positive ions	Metals	
These elements tend to gain electrons in chemical reactions, forming negative ions	Nonmetals	
An atom that has gained or lost an electron	An ion	
An atom that has gained or lost a neutron	hydrogen isotopes + + + + + An isotope	
An atom that has gained or lost a proton	A different element	
Atomic mass	equivalent to the number of protons and neutrons the atom of an element.	

→ 1 H 1.00794	What is this number?	Atomic Number (number of protons)	
1 H → 1.00794	What is this number?	Atomic Mass	
What determi	nes atomic mass?	The number of protons plus the number of neutrons .	
1	Why isn't the atomic mass a whole number?	Elements can have isotopes with more or fewer neutrons. The atomic mass uses the average of the isotopes.	
5 6 7 B C N 10.81 12.01 14.01 13 14 15 Al Si P 26.98 28.09 30.97	Carbon (atomic number 6) shown here is carbon-12. Carbon has an isotope known as Carbon-14. How is it different?	Carbon 14 has two more neutrons than carbon-12.	

PS.5 ENERGY IS TRANSFORMED AND CONSERVED

Т

Definition of energy	The ability to cause change	
Energy exists in these two states	Potential and kinetic	
Potential energy	Energy based on its position or chemical compositior	
Forms of potential energy	Chemical, nuclear, elastic, gravitational	
What is chemical energy ? Give examples	Potential energy in molecular bonds- energy in food, fossil fuels, batteries	

What is elastic energy?	Potential energy in objects with a restorative force, like springs or rubber bands	
What is gravitational energy?	Potential energy based on place or position (affected by gravity). Objects on a shelf or held off the ground.	
What is nuclear energy?	Potential energy held in the nucleus of an atom.	
Kinetic energy	The energy of motion	
Kinetic energy examples	Waves, electrons, molecules are in constant motion. Objects have kinetic energy when in motion.	
Forms of energy (list 5)	Radiant, thermal, chemical, mechanical, nuclear	
What kind of energy is visible light?	A form of radiant energy	
What kind of energy is sound?	A form of mechanical energy	
Some examples of nonrenewable energy sources	natural gas oil	
Some examples of renewable energy sources	wind geothermal	
The law of conservation of energy	states that energy cannot be created nor destroyed but only changed from one form to another.	

In any energy tra into the environ	ansformation, some energy is lost ment as:	Thermal energy (heat)	
How is thermal o	energy transferred (3 ways)?	Conduction, convection, radiation	
What is conduct	ion?	Direct transfer of thermal energy (a pan sits on a hot burner, you touch the pan)	
What is convect i	ion?		Energy is transferred in water and the atmosphere by the circular rising movement caused by
What is radiatio	n?	Energy transferred by electromagnetic radiation (the sun).	
What is heat ?		The transfer of thermal energy between substances due to a difference in temperature	
How is kinetic er	nergy measured?	Kelvin scale 0 Kelvin is the temperature at which atoms and molecules do not move.	
In general, as th temperature of the exceptions?	ermal energy is added , the a substance increases . What are	There is no change in temperature during a phase change (freezing, melting, condensing, evaporating, boiling, vaporizing) as this energy is being used to make or break bonds between molecules .	
temberature phase change (vaporization)	This graph shows how energy input causes temperature to increase. What are the flat sections?	Points where melting and vaporization occurs, and energy is being used to break bonds.	
What is tempera	ature?	The average kinetic energy of molecules in a substance.	
Kelvin scale		Temperature scale designed so that zero degrees K is defined as absolute zero	

Celsius scale	Temperature scale designed so that freezing point is taken as 0 degrees and the boiling point as 100 degrees
What is absolute zero ?	The temperature - 273 C or 0 Kelvin is the theoretical temperature at which molecular motion stops
Which substance is unusual in that it expands wh frozen , while most expand when heated?	en Voter of crystals, water expands when frozen.
What is electrical energy?	It is produced from other energy sources through a series of transformations and is a way to store , move , and deliver energy.
What are two kinds of nuclear energy?	Fusion - joining nuclei together (used in power plants) Fission - splitting nuclei (still experimental)
What is an advantage of nuclear energy?	A very small amount of material produces a large amount of energy
What is a possible negative effect of nuclear energy?	The danger of accidents that could release radiation into populated areas. The danger of radioactive nuclear waste storage and disposal
Describe this energy transformation	Chemical energy from fossil fuels is transformed into electrical and mechanical energy that run the car.
Describe this energy transformation	Radiation from the sun is transformed into chemical energy (potential) in food through photosynthesis
Describe this energy transformation	Chemical energy in a battery is transformed into light energy (radiant).
Describe this energy transformation	Electrical energy is transformed into thermal energy

Describe this energy transformation	Chemical energy in food is transformed into mechanical energy of a moving bicycle	
What kind of thermal transfer is shown here?	Conduction - Molecules transfer thermal energy by colliding with adjacent molecules	
What kind of thermal transfer circulates heat around a room and powers weather in the atmosphere?	Convection – A method of transferring thermal energy by heating a substance and then allowing the substance to move, carrying the thermal energy with it.	
What kind of thermal transfer is shown here?	Radiation - Transfer of thermal energy by electromagnetic waves through space	
PS.6 LONGITUDINAL (SOUND) AND TRANSVERSE WAVES		
What waves do?	Waves transmit energy from one place to another without a permanent transfer of mass	
Wavelength	Measured from any point on a wave to the corresponding point on the next wave	
What happens as the energy of a wave increases?	The amplitude increases and with a compression wave, the sound will be louder.	
Wave frequency	The number of waves produced over a given period	
Relationship between wavelength and frequency FREQUENCY	Inverse relationship - As wavelength increases, frequency decreases	
Refraction	Occurs when a wave passes through different materials, resulting in a change in the speed of the wave.	

Reflection	Occurs when a wave bounces from a surface back toward its source causing an echo .
Diffraction	Occurs when a wave encounters irregular surfaces or openings.
Results of diffraction	Causes waves to change direction and be scattered. This allows sound waves to bend around small obstacles and to spread beyond openings like open doors.
Type of wave?	Transverse wave
Type of wave?	Longitudinal wave
Radiant energy including light travels as this kind of wave	Transverse wave
	Wavelength of transverse wave
?	Amplitude of a transverse wave
Which wave carries more energy?	The high amplitude wave
What kind of wave?	Longitudinal wave
What kind of wave	Transverse Wave

What causes longitudinal waves?	Vibrations carried through a substance
A substance (solid, liquid, gas) through which longitudinal waves travel	medium
How particles move in a longitudinal wave	Particles of the medium vibrate back and forth along the same path the wave travels, but the particles themselves do not move along the wave. Only energy travels from one place to another
Other names for a longitudinal wave	Compression wave, mechanical wave, sound wave
	compressions
	rarefactions
	wavelength
Amplitude of longitudinal wave	the largest distance the particles vibrate from their rest (starting) positions.
Wave with greater amplitude	Carries more energy, is louder
A type of mechanical energy produced by vibrations	Sound
How vibrating strings cause sounds	Vibrating strings bump molecules in air (medium) which bump other molecules causing a chain or wave of vibrating molecules which reach the ear

What affects the speed of a longitudinal wave?	Sound travels slowest through air and fastest through solids . Sound does not travel through a vacuum (empty space).
How does temperature affect the speed of sound?	The warmer the medium , the faster sound travels.
Higher frequency waves create	High pitched sounds
Greater amplitude waves create	Louder sounds
Sound travels as this type of wave	A compression wave (matter vibrates in the same direction in which the wave travels)
The tendency of a system to vibrate at maximum amplitud e at certain frequencies	Resonance
Reason for the Tacoma Narrows Bridge collapse	High amplitude vibrations caused by resonance
How resonance creates music	The shape of instruments produces resonance within, and instruments playing the same note produce additional resonance and a louder sound.
Technologies associated with reflected sound waves	Sonar Ultrasound
Determines speed of sound	The medium through which the waves travel and the temperature of the medium.
?	Rarefaction

PS.7 ELECTROMAGNETIC RADIATION INCLUDING LIGHT

?

How radiant energy travels-	In transverse waves
What electromagnetic radiation consists of-	ELECTROMAGNETIC Electric Field RADIATION Magnetic Field Changing electric and magnetic fields
At what speed do all types of electromagnetic radiation travel at?	All types travel at the speed of light
The sun gives off radiant energy in a various? which are shown in the electromagnetic spectrum.	frequencies / wavelengths
Electromagnetic waves are arranged according to wavelength and frequency on the -	electromagnetic spectrum
Electromagnetic radiation may be converted to other forms of energy only after -	it is absorbed by matter
The electromagnetic spectrum includes -	gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves
The lowest energy waves with the longest wavelength and lowest frequency -	Radio waves
The highest energy waves with the shortest wavelength and the highest frequency-	Gamma waves

What falls in the middle and makes up a small portion of the spectrum?	Visible light
List the types of waves on the spectrum from longest to shortest wavelength-	Radio, microwaves, infrared, visible light, ultraviolet, x-ray, gamma rays
List the types of electromagnetic radiation , from highest to lowest frequency	Gamma rays, X-rays, ultraviolet, visible light, infrared, microwaves, radio waves
Describe radio waves	Lowest energy waves with the longest wavelength and the lowest frequency
Describe gamma rays	The highest energy waves with the shortest wavelength and the highest frequency
Relationship between frequency and wavelength	Inverse – when one increases, the other decreases
How electromagnetic waves are arranged on the electromagnetic spectrum	By wavelength
Radiant energy travels in-	Straight lines
When radiant energy , which travels in straight lines , strikes an object, this happens	It can be reflected, absorbed , or transmitted
ABSORPTION When a material absorbs the radiant energy that strikes it, this happens	The energy of the wave is transformed into another type of energy, usually thermal energy (heat)
TRANSMISSION When a material transmits the wave that strikes it - Transparent Glass	It allows the wave to pass through

When a material reflects the wave that strikes it -	The wave bounces off
Different colors of visible light have different -	frequencies
What makes an object appear a certain color ?	The object reflects the light of that color (wavelength) back to your eye while absorbing the other color wavelengths
An object that appears black -	absorbs all wavelengths of visible light
A blue ball is blue because -	It reflects blue light wavelengths back to your eye, while absorbing the other wavelengths of visible light
These reflect light -	mirrors
The law of reflection states that-	the angle of reflection is equal to the angle of incidence
These mirrors diverge light and produce a smaller, upright image	Convex mirrors
These mirrors converge light and produce an upright , magnified image if close and an inverted, smaller image if far away	Concave mirrors
Results when visible light travels through different media (for instance air to water)	Refraction (bending) due to a change in speed

What lenses do	Refract light
What visible light does when it enters a lens -	It bends toward the thickest part of the lens
Lenses that converge (narrow) light	Convex
Lenses that diverge (spread) light	Concave
Name some instruments that use lenses to change the path of light rays to produce a specific type of image -	Cameras, telescopes, binoculars, and microscopes
Electromagnetic radiation used for communication -	The lower frequency waves like radio waves, microwaves, infrared radiation, visible light
Electromagnetic radiation used in medicine	x-rays
Types of waves that can be harmful to humans -	High frequency waves like x-rays and gamma rays (nuclear energy)
PS.8 WORK, FORCE, MOTION	
The change in position of an object per unit of time	Speed
The speed an object moves is -	Velocity

Velocity can be positive or negative depending on -	The direction of the change in position
The change in velocity per unit of time	Acceleration
Acceleration of an object moving with constant velocity	No acceleration
A decrease in velocity	Negative acceleration or deceleration
Shape of a distance-time graph for acceleration	A curve
Why objects moving with circular motion are constantly accelerating	Because direction (and hence velocity) is constantly changing
Newton's three laws of motion	Describe the motion of all common objects
Newton's first law of motion	An object at rest will remain at rest unless acted on by an unbalanced force. An object in motion continues in motion with the same speed and in the same direction unless acted upon by an unbalanced force. This law is often called " the law of inertia "
Newton's second law of motion	Acceleration is produced when a force acts on a mass. The greater the mass (of the object being accelerated) the greater the amount of force needed (to accelerate the object)
Newton's third law of motion	For every action there is an equal and opposite re- action
The amount of matter in a given substance	Mass

A measure of the force due to gravity acting on a mass	Weight
Weight - unit of measure	Newton
Mass – unit of measure	kilograms
Force - unit of measure	Newton
A push or pull	Force
What determines the motion of an object?	the sum of the forces acting on it
A device that makes work easier	A simple machine
distance/time	Speed (s = d/t)
mass × acceleration	Force (F = ma)
force × distance	Work (W = Fd)
work/time	Power (P = W/t)

Concept that simple machines make work easier	Mechanical advantage
The work put into a machine is always greater than the work output due to this.	Friction Pulling Force Force
The ratio of work output to work input	Efficiency
PS.9 ELECTRICITY AND MAGNETISM	
What is static electricity?	An imbalance is static electrical charges build up on an object which can discharge quickly causing a spark .
What often causes static electricity?	Friction can cause electrons to be transferred from one object to another.
Gives some examples of static electricity	Lightning (atoms bump together in clouds) Touching metal after rubbing feet on carpet Pulling clothes that have been rubbing each out of dryer
A material that transfers an electric current well.	Metal wire conducts electricity A conductor
A material that does not transfer an electric current	An insulator plastic insulation
A property of matter that affects the flow of electricity	Resistance
More resistance (less flow of electricity) can be caused by:	A more narrow wire A longer wire Type of material

More resistance causes:	Less flow of electricity
The potential difference in charge between two points is called:	Voltage
What is current ?	The flow of electrons through a circuit
A measure of the degree to which an object opposes the passage of an electric current is:	Resistance
What is voltage?	The force making electrons flow between two points The potential energy between two points
The complete pathway through which electrons flow	A circuit
To flow through a circuit, electrons must receive energy from a source . This is :	voltage
Electrons move around the circuit , traveling from high to low potential . This is :	current
What is the purpose of a circuit ?	Electrons moving through the circuit transfer energy in order to do some work.
When energy flows through a circuit, what gets transferred to the surroundings?	Thermal energy (heat)
What are some components of a circuit ?	Electirc current flows through wires as well as transistors and diodes .

What kind of circuit is this?	Series – If one light goes out, the circuit is broken and all go out.
What kind of circuit is this?	Parallel – If one light goes out, the circuit will travel through other wires and other lights will continue to that.
What knd of circuit is this?	Open circuit – no flow of current
What kind of circuit is this?	Closed circuit – current can flow
In between a conductor and an insulator .	A semiconductor
A semiconductor device that acts like a one way valve to control the flow of electricity in electrical circuits	Diode
Made of semiconductor diodes that produce direct current (DC) when visible light, infrared light (IR), or ultraviolet (UV) energy strikes them	Solar cells
Emit visible light or infrared radiation when current passes through them.	Light emitting diodes (LED)
Some examples of technologies that us LEDs .	TV remote; LED TV or notebook computer screen
Semiconductor devices used to amplify electrical signals (in stereos, radios, etc.) or to act like a light switch turning the flow of electricity on and off.	Transistors
Related to electricity	Magnetism

What is the difference between electronic and electrical circuits?	An electric circuit simply powers machines with electricity . However, an electronic circuit can interpret a signal or an instruction, and perform a task to suit the circumstance. Electronic components tend to be very small .
Can produce a magnetic field and cause iron and steel objects to act like magnets.	Electricity
What are magnetic fields?	Magnets create forces that act at a distance
Electromagnetic forces can-	Attract or repel
What are electromagnets?	Moving electricity can produce a magnetic field and cause iron and steel objects to act like magnets.
How are electromagnets different from other magnets?	They are temporary magnets that lose their magnetism when the electric current stops.
What is electromagnetic induction?	Changing magnetic fields can produce electrical current in conductors
A device that uses a magnet to convert mechanical energy into electrical energy	A generator
How does a generator work?	Steam, wind, or water drive the turbine (a large propeller) and, in turn, rotate the copper coils of the generator . As the copper coils spin within the magnets, electricity is produced.
Uses magnetism to onvert electrical energy into mechanical energy that is used to do work	Electric motors
Temporary magnets that lose their magnetism when the electric current is removed	Electromagnets

Examples of devices with motors	Many household appliances including blenders, washing machines, fans.
How are motors different from generators ?	Motors convert electircal energy into mechanical energy. Generators do the opposite, converting mechanical energy into electrical energy.